Energy Storage Projectsin AEP

- A Migratory Trend -

Ctober 4-7
Seattle

Ali Nourai American Electric Power Chairman, Electricity Storage Association

Transformer

Community

Energy

Storage

AEP Overview

Migratory Path of Utility Energy Storage - in AEP

AEP's View of Energy Storage Value

Massive Electricity Storage – AEP's Vision

The Three Categories of Storage Benefits

1- Strategic Benefits

- Serve Net-Zero Customers
- Prepare for New Revenue Models

Electric Utilities Need to Focus

On All 3 Benefits to Justify

the Storage Cost and

Survive the Coming

2- Service Benefits

- T&D Capital Deferral
- Buffering Renewables
- Service Reliability
- Voltage Support

3- Market Benefits

- Energy Arbitrage
- Frequency Regulation
- Generation Capacity

AEP's First Substation Battery for Capital Deferral

This First Utility-Scale NAS Project was Partially Funded by DOE/Sandia

- **2006**
- ■1MW, 7.2 MWh of NaS battery
- Deferring New Substation

AEP Substation-Scale Storages – 11MW, 75MWh

1 MW, 7.2 MWh installed in 2006

Deferred substation upgrades

3 x2MW,14.4 MWH installed in 2008

Demonstrated "Islanding"

4MW, 25MWh substation will be on-line in January 2010

The New "Islanding" feature was Partially Funded by DOE/Sandia

Dynamic Islanding – Backup Power

This First Community-Scale Backup Power with NAS Battery was Partially Funded by DOE/Sandia

Live Islanding Test Information

Test Site : Balls Gap, Milton, WV

Test Date: July 8, 2009

Island Size: 700 customers

Time to island customers: 0.5 to 2 min.

Power Outage Duration: 29 min.

• Time to Exit Island: 6 sec. (not Synchronized)

Average Island Load: 0.8 MW

This First Community-Scale Backup Power with NAS Battery was Partially Funded by DOE/Sandia

Community Energy Storage (CES)

CES is a small distributed energy storage unit connected to the secondary of transformers <u>serving a few houses</u> or small commercial loads

- Uses New or Used PHEV- EV batteries
- Offers All Values of Substation Batteries when aggregated,
- Offers Backup Power to customers
- Buffers Customer Renewable Generation
- Makes PHEV Charging Time a less critical issue

CES Layout

Bolted Termination

CES – A Virtual Substation Battery

CES is Operated as a Fleet offering a Multi-MW, Multi-hour Storage

Local Benefits:

- 1) Backup power
- 2) Voltage correction
- 3) Renewable Integration

Grid Benefits:

- 4) Load Leveling at substation level
- 5) Power Factor Correction
- 6) Ancillary services

Advantages of CES to Substation Batteries

While CES is, Functionally, a Multi-MW, Multi-hour Substation Battery, It has some Inherent Advantages:

- 1. More reliable Backup Power to customers (closer)
- 2. More Effective in providing Voltage Support (distributed)
- 3. More likely to be a standardized commodity (low cost)
- 4. More Efficient in buffering customer renewable sources
- 5. More synergy with Electric Vehicle batteries (competition)
- 6. Easier installation and maintenance (240 V)
- 7. Unit outage is less critical to the grid (smaller)
- 8. Lower resistive loss in wires (closer to customer)
- 9. A better fit into the Smart Grids & MicroGrids

CES Functional Specifications – Open to Public

AEP Specifications for CES is "OPEN SOURCE"

for Public Use and Feedback.

Latest Version available from

www.aeptechcenter.com/ces

EPRI is Facilitating Industry-Wide Collaboration with Utilities and Vendors

Key Parameters	Value
Power (active and reactive)	25 kVA
Energy	50 kWh
Voltage	120V / 240V
Round Trip AC Energy Efficiency	> 85%

CES Cost Forecast

PHEV, and its battery development, is a **US National Priority** as well as having an extensive global competition

Pending the successful market penetration of PHEV, CES cost forecast (for a 2-hour system) over the next five years is:

- \$1,000 /kW Commodity Pricing will keep this number low or
- \$500 /kWh PHEV Penetration will push this number down

Conclusion

We See Higher Value in
Utility Owned & Operated
Grid-Connected Energy Storage
Located
Closer to Our Customers

